
HIGHER SECONDARY FIRST YEAR MATHEMATICS

MODEL QUESTION PAPER

[Maximum Marks:90

Time Allowed: 2.30 Hours]

Instructions:		 (a) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately. (b) Use Blue or Black ink to write and underline and pencil to draw diagrams. 					
				SECTION – I			
Note: (i)		All q	uestions are c	ompulsory.		$20 \times 1 = 20$	
	(ii)				nnswer from the given nd the corresponding		
1. If two sets set $A \times B$			ave 17 elements	s in common, then t	he number of elements	common to the	
$(1) 2^{17}$		(2	$(2) 17^2$	(3)34	(4) insufficient	(4) insufficient data	
				$1 \text{ if } f: \mathbb{R} - \{3\} \to \mathbb{R}$	is defined by $f(x) = \frac{3+}{3-}$	$\frac{x}{x}$ for	
$x \in \mathbb{R} - \{3\}$, then the range (1) \mathbb{R} (2) \mathbb{R}			-	(2) ID (1)	(A) ID (2)		
()	1		* *	` '	$(4) \ \mathbb{R} - \{-3\}$	1 4 4	
		roduct	of the roots of	the equation $2x^2 + 6$	(a-3)x+3a-5=0 are e	qual, then the	
value of a is (2) 2			2) 2	(3) 0	(4) 4		
` '	e of th	,	wing is not true	` /	(.)		
$(1) \sin x \le$		C		(2) $ \sec x < 1$	(2) $ \sec x < 1$		
$(3) \cos x \leq 1$				(4) $\csc x \ge 1$ or $\csc x \le -1$			
5. $\cos 1^{\circ} + \cos 1^{\circ}$	$s2^{\circ} + cc$	$\cos 3^{\circ} + \cdots + \cos 179^{\circ}$ is					
(1) 0			2)1	(3)-1	(4) 89		
					are parallel and no thre	e are	
	it,then		-	oints of intersection			
(1) 45	indon		(2) 40	(3) 10!	$(4) 2^{10}$		
(1) 4		viien 2 2)	2 ²⁰²⁰ is divided b	(3) 1	(4) 2		
· /		`			netic mean and geomet	ric mean are	
16, 8 resp			tivo positiv o ira	moors whose arrent	none mean and goome.		
$(1)\dot{1}0$				(3)5	(4) 4	(4) 4	
9. In the equ	ation o	of a str	aight line $ax + b$	by + c = 0, if a, b, c an	re in arithmetic progres	sion then the	
point on t	he stra	_					
(1) (1,2)	(1) (1,2) (2) (1,-2)			(3) (2,-1)	(4) (2,1)		
10. If two stra	aight li	nes x-	+(2k-7)y+3=	0 and $3kx + 9y - 5 =$	0 are perpendicular to	each other then	
the value	of k is	S					
(1) 3		(2	$(2)\frac{1}{3}$	$(3)\frac{2}{3}$	$(4)\frac{3}{2}$		

26. Show that the points whose position vectors are $2\hat{i} + 3\hat{j} - 5\hat{k}$, $3\hat{i} + \hat{j} - 2\hat{k}$ and $6\hat{i} - 5\hat{j} + 7\hat{k}$ are collinear.

- 27. Examine the continuity of the function $\frac{x^2-16}{x+4}$
- 28. Find the derivative of $y = \log_{10} x$ with respect to x.
- 29. Evaluate: $\int \frac{\sin x}{1 + \cos x} dx$
- 30. If $A = \begin{bmatrix} 4 & 2 \\ -1 & x \end{bmatrix}$ and (A-2I)(A-3I) = O, find the value of x.

SECTION - III

Note: (

(i) Answer any **SEVEN** questions.

 $7 \times 3 = 21$

- (ii) Question number 40 is compulsory.
- 31. Check the relation $R = \{(1,1),(2,2),(3,3),...,(n,n)\}$ defined on the set $S = \{1,2,3,...,n\}$ for the three basic relations.
- 32. Prove that $\frac{\cot(180^{\circ} + \theta)\sin(90^{\circ} \theta)\cos(-\theta)}{\sin(270^{\circ} + \theta)\tan(-\theta)\csc(360^{\circ} + \theta)} = \cos^{2}\theta\cot\theta.$
- 33. In an examination a student has to answer 5 questions out of 9 questions, in which 2 are compulsory. In how many ways a student can answer the questions?
- 34. Find the coefficient of x^{15} in $\left(x^2 + \frac{1}{x^3}\right)^{10}$.
- 35. Find the equations of the straight lines, making the y-intercept of 7 and angle between the line and the y-axis is 30° .
- 36. Prove that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x-y)(y-z)(z-x)$.
- 37. If \vec{a} , \vec{b} and \vec{c} are vectors with magnitudes 3,4 and 5 respectively and $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, then find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$.
- 38. Evaluate: $\int x \log x \, dx$.
- 39. If A and B are mutually exclusive events $P(A) = \frac{3}{8}$ and $P(B) = \frac{1}{8}$, then find
 - (i) $P(\overline{A})$ (ii) $P(A \cup B)$ (iii) $P(\overline{A} \cap B)$
- 40. Evaluate: $\lim_{x\to 0} \frac{\sqrt{x+2} \sqrt{2}}{x}$.

SECTION – IV

Note: Answer all the questions.

 $7 \times 5 = 35$

- 41. (a) If $f,g:\mathbb{R}\to\mathbb{R}$ are defined by f(x)=|x|+x and g(x)=|x|-x, find $g\circ f$ and $f\circ g$.
 - (b) Solve the linear inequalities and exhibit the solution set graphically:

$$x + y \ge 3$$
, $2x - y \le 5$, $-x + 2y \le 3$.

42. (a) If $A + B + C = \pi$, prove that $\cos A + \cos B + \cos C = 1 + 4\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right)$

(OR)

- (b) In a $\triangle ABC$, prove that $a\cos A + b\cos B + c\cos C = 2a\sin B\sin C$.
- 43. (a) Prove by the principle of mathematical induction, the sum of the first n non-zero even numbers is $n^2 + n$.

(OR)

- (b) The number of bacteria in a certain culture doubles every hour. If there were 30 bacteria present in the culture originally, how many bacteria will be present at the end of 2^{nd} hour, 4^{th} hour and the n^{th} hour?
- 44. (a) Show that $\begin{vmatrix} \log x & \log y & \log z \\ \log 2x & \log 2y & \log 2z \\ \log 3x & \log 3y & \log 3z \end{vmatrix} = 0$

(OR)

- (b) Show that the vectors $\hat{i} 2\hat{j} + 3\hat{k}$, $-2\hat{i} + 3\hat{j} 4\hat{k}$, $-\hat{j} + 2\hat{k}$ are coplanar.
- 45. (a) Describe the interval(s) on which the function $h(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is continuous.

(OR)

- (b) If $\sin y = x \sin(a+y)$, then prove that $\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$, $a \ne n\pi$.
- 46. (a) Using the substitution $2x+1=t^2$, show that $\int \frac{6x}{\sqrt{2x+1}} dx = 2(x-1)\sqrt{2x+1} + c.$ (OR)
 - (b) A construction company employs 2 executive engineers. Engineer-1 does the work for 60% of jobs of the company. Engineer-2 does the work for 40% of jobs of the company. It is known from the past experience that the probability of an error when engineer-1 does the work is 0.03, whereas the probability of an error in the work of engineer-2 is 0.04. Suppose a serious error occurs in the work, which engineer would you guess did the work?
- 47. (a) At a particular moment, a student needs to stop his speedybike to avoid a collision with the barrier ahead at a distance 40 metres away from him. Immediately he slows (retardation) the bike under braking at a rate of 8 metre/second². If the bike is moving at a speed of 24m/s, when the brakes are applied, would it stop before collision?

(OR

(b) Find the separate equations of the pair of straight lines $2x^2 - xy - 3y^2 - 6x + 19y - 20 = 0$.
